Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10542, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006939

RESUMO

Cancer is a complex disease where cancer cells express epigenetic and transcriptomic mechanisms to promote tumor initiation, progression, and survival. To extract relevant features from the 2019 Cancer Cell Line Encyclopedia (CCLE), a multi-layer nonnegative matrix factorization approach is used. We used relevant feature genes and DNA promoter regions to construct genomic interaction network to study gene-gene and gene-DNA promoter methylation relationships. Here, we identified a set of gene transcripts and methylated DNA promoter regions for different clusters, including one homogeneous lymphoid neoplasms cluster. In this cluster, we found different methylated transcription factors that affect transcriptional activation of EGFR and downstream interactions. Furthermore, the hippo-signaling pathway might not function properly because of DNA hypermethylation and low gene expression of both LATS2 and YAP1. Finally, we could identify a potential dysregulation of the CD28-CD86-CTLA4 axis. Characterizing the interaction of the epigenome and the transcriptome is vital for our understanding of cancer cell line behavior, not only for deepening insights into cancer-related processes but also for future disease treatment and drug development. Here we have identified potential candidates that characterize cancer cell lines, which give insight into the development and progression of cancers.


Assuntos
Genômica , Neoplasias/genética , Linhagem Celular Tumoral , Humanos , Família Multigênica , Neoplasias/patologia , Regiões Promotoras Genéticas
2.
BMC Bioinformatics ; 20(1): 417, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409281

RESUMO

BACKGROUND: The development of high throughput sequencing techniques provides us with the possibilities to obtain large data sets, which capture the effect of dynamic perturbations on cellular processes. However, because of the dynamic nature of these processes, the analysis of the results is challenging. Therefore, there is a great need for bioinformatics tools that address this problem. RESULTS: Here we present DynOVis, a network visualization tool that can capture dynamic dose-over-time effects in biological networks. DynOVis is an integrated work frame of R packages and JavaScript libraries and offers a force-directed graph network style, involving multiple network analysis methods such as degree threshold, but more importantly, it allows for node expression animations as well as a frame-by-frame view of the dynamic exposure. Valuable biological information can be highlighted on the nodes in the network, by the integration of various databases within DynOVis. This information includes pathway-to-gene associations from ConsensusPathDB, disease-to-gene associations from the Comparative Toxicogenomics databases, as well as Entrez gene ID, gene symbol, gene synonyms and gene type from the NCBI database. CONCLUSIONS: DynOVis could be a useful tool to analyse biological networks which have a dynamic nature. It can visualize the dynamic perturbations in biological networks and allows the user to investigate the changes over time. The integrated data from various online databases makes it easy to identify the biological relevance of nodes in the network. With DynOVis we offer a service that is easy to use and does not require any bioinformatics skills to visualize a network.


Assuntos
Redes Reguladoras de Genes , Interface Usuário-Computador , Acetaminofen/farmacologia , Biologia Computacional/métodos , Bases de Dados Factuais , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...